Parameter Synthesis for Parametric Interval Markov Chains
نویسندگان
چکیده
Interval Markov Chains (IMCs) are the base of a classic probabilistic specification theory introduced by Larsen and Jonsson in 1991. They are also a popular abstraction for probabilistic systems. In this paper we study parameter synthesis for a parametric extension of Interval Markov Chains in which the endpoints of intervals may be replaced with parameters. In particular, we propose constructions for the synthesis of all parameter values ensuring several properties such as consistency and consistent reachability in both the existential and universal settings with respect to implementations. We also discuss how our constructions can be modified in order to synthesise all parameter values ensuring other typical properties.
منابع مشابه
Reachability in Parametric Interval Markov Chains Using Constraints
Parametric Interval Markov Chains (pIMCs) are a specification formalism that extend Markov Chains (MCs) and Interval Markov Chains (IMCs) by taking into account imprecision in the transition probability values: transitions in pIMCs are labeled with parametric intervals of probabilities. In this work, we study the difference between pIMCs and other Markov Chain abstractions models and investigat...
متن کاملAn Efficient Synthesis Algorithm for Parametric Markov Chains Against Linear Time Properties
In this paper, we propose an efficient algorithm for the parameter synthesis of PLTL formulas with respect to parametric Markov chains. The PLTL formula is translated to an almost fully partitioned Büchi automaton which is then composed with the parametric Markov chain. We then reduce the problem to solving an optimisation problem, allowing to decide the satisfaction of the formula using an SMT...
متن کاملParameter Synthesis for Markov Models: Faster Than Ever
We propose a simple technique for verifying probabilistic models whose transition probabilities are parametric. The key is to replace parametric transitions by nondeterministic choices of extremal values. Analysing the resulting parameter-free model using off-the-shelf means yields (refinable) lower and upper bounds on probabilities of regions in the parameter space. The technique outperforms t...
متن کاملMean-Payoff Optimization in Continuous-Time Markov Chains with Parametric Alarms
Continuous-time Markov chains with alarms (ACTMCs) allow for alarm events that can be non-exponentially distributed. Within parametric ACTMCs, the parameters of alarm-event distributions are not given explicitly and can be subject of parameter synthesis. An algorithm solving the ε-optimal parameter synthesis problem for parametric ACTMCs with long-run average optimization objectives is presente...
متن کاملPermissive Finite-State Controllers of POMDPs using Parameter Synthesis
We study finite-state controllers (FSCs) for partially observable Markov decision processes (POMDPs). The key insight is that computing (randomized) FSCs on POMDPs is equivalent to synthesis for parametric Markov chains (pMCs). This correspondence enables using parameter synthesis techniques to compute FSCs for POMDPs in a black-box fashion. We investigate how typical restrictions on parameter ...
متن کامل